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INTRODUCTION

The purpose of this report is to make available 176 analyses of Kilauea Iki
drill core, which were obtained between 1968 and 1990 by classical gravimetric
analysis. A few of these analyses have been published previously (two in Helz,
1980; one in Wright and Fiske, 1971). In addition, analyses with MgO < 11.00%
(through analytical batch BK52, completed 10/84) were presented as magnesia
variation diagrams in Helz (1987a), and all analyses in this earlier part of the data
set were presented graphically in Helz and others (1989). However it was not
possible to publish the analyses themselves in either paper. In addition to
presenting the analytical base for those two papers, this report includes 45
analyses of drill core obtained in four later analytical batches.

BACKGROUND AND PREVIOUS WORK

Kilauea lki lava lake formed during the 1959 summit eruption of Kilauea
Volcano, when lava ponded in the large pit crater just east of the summit caldera
(Figure 1). An extended narrative of the eruption is given in Richter and others
(1970); further details of the dynamics of magma resupply during the 1959
eruption can be found in Eaton and others (1987). A large suite of lava and
pumice samples was collected during the 1959 eruption; bulk analyses of 23
samples of this erupted material were presented by Murata and Richter (1966).
Wright (1973) and Helz (1987b) have investigated the role of magma mixing in this
eruption, using both the chemical data of Murata and Richter (1966) and additional
chemical and petrographic data.

Because Kilauea lki lava lake has not yet been covered up by subsequent
eruptive activity, it has been the object of extensive, long-term study. The earliest
core, recovered in 1960-1962, was described by Richter and Moore (1966). Their
report includes 20 major-element analyses, plus very detailed petrographic
description and modal analysis of the 1960-62 drill core. Workers who wish to
use this chemical data on the oldest core should note that some of the Na,0O and
K,0 analyses are not correct in the original publication. The corrected analyses
are presented in Table 4 of Wright and others (1976).

This report includes data from core recovered in 1967, 1975, 1979 and
1981. The locations of the 1967-1981 drill holes are shown in plan view in Figure
2 and in cross-section in Figure 3. Petrographic descriptions of the individual cores
are given in Helz and others (1984) and Helz and Wright (1983). More detailed
information on two of the 1979 cores, KI79-3 and ooze from KI79-1, may be
found in Mangan and Helz (1986) and in Helz (1993) respectively. The core has
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Figure 1. Index map of the summit area of Kilauea Volcano. All historic lava lakes
formed to date (1994) are shown in black. The prehistoric Makaopuhi lava lake
is shown in the stippled pattern. The historic lava lakes in Aloi, Alae, and
Makaopuhi pit craters are now covered by lavas from the Mauna Ulu satellite
shield, the summit of which is indicated by the "X".
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Figure 2. Plan view of the post-1959 surface of Kilauea lki. The lake surface has a
network of levelling stations, the locations of which are shown by the small
dots. The larger dots indicate the locations of holes drilled from 1967 to 1981.
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Figure 3. Cross-section of Kilauea lki lava lake, taken along the N-S line of closely-
spaced levelling stations shown in Figure 2. The present surface of the lava
lake and two pre-eruption profiles are shown. The two pre-eruption profiles are
taken from two different topographic maps: one (at 1:2000) is based on air
photos taken in 1948; the other (at 1:5000) is based on air photos taken in
1955. Both maps were prepared by R. Jordan, U.S.G.S., Flagstaff. The
present position of the lake bottom (dashed line) has been intersected only at
the location of drill hole KI79-5. The vertical exaggeration is 4:1.

The drill holes, which mostly lie along a line 100 feet to the west of this
section, are shown as vertical lines projected onto this cross section. Several
of the drill hole locations have been reoccupied more than once, in order to
sample the same section of the crust in several stages of development.
Spacing between these closely-spaced holes is not to scale in this figure.



been sampled extensively, for petrographic and microprobe analysis as well as bulk
analysis. Data on glass compositions and their significance were presented in Helz
(1987a). In addition, the MgO and CaO contents of glasses in Kilauea lki have
been calibrated for use as empirical geothermometers and the results used to
determine temperature profiles through the partially molten sections of the lake,
where these were recovered as drill core (Helz and Thornber, 1987).

SAMPLING PROCEDURE

The drill core was sampled for bulk analysis as follows: for the 1967 and
1975 cores, the core was sampled, generally at intervals of 10 feet, down to the
partially molten zone, and at closer intervals thereafter, to establish the gross
vertical compositional variations within the lake. In addition, some of the internal
differentiates of the lake, the segregation veins, were sampled. Lastly the deepest
core recovered, whether mush or segregated melt (the "glass-in-bit" samples), was
sampled, as were the oozes that flowed into the drill holes between re-entries of
the drill string.

There is intentional overlap in the sampling of cores KI67-3 and KI75-1 (see
Tables 3 and 4), to the maximum depth of the 1967 core (87 feet). As shown in
Figure 3, each of the three 1975 holes was drilled right next to one of the three
1967 holes. The purpose of reoccupying the sites was to allow us to extend the
chemical and petrographic section at particular localities. The reason for the
overlap in analytical samples from the one locality was to see if there were lateral
variations that might occur in the lake even over distances of 1-2 meters. Lateral
variations on this scale were found to be minor. Thus, analyses from drill holes
within a cluster can be spliced together as a single analytical profile, without
introducing serious distortion in the chemical sections.

Having defined the chemical variation in the upper part of the lake at three
different sites (see drill hole locations in Figure 3), we sampled the later cores,
recovered in 1979 and 1981, more sparingly. Three of the six 1979 cores have
been at least partially analyzed: KI79-3 was sampled because it is in the same
cluster as KI67-3 and KI75-1. This allowed us to continue the chemical section at
that location to 173 feet; as can be seen in Table 8, only the lower parts of that
core, recovered from depths below the bottom of KI75-1, were analyzed. The
KI79-1 core was sampled between 80 and 204 feet (see Table 7); this core was
selected to fill in the rather large gap between the analyzed section in the middle of
the lake, and the next section to the north, at the KI67-1/KI75-2 location (see
Figure 3). Lastly KI79-5 (Table 9) was sampled extensively both because it
reoccupied the KI67-2/Ki75-3 locality, and because it was and is still the only core
to pass completely through the lava lake.



Of the seven 1981 cores recovered, only one has been sampled extensively
for analysis. That one is KI81-1, the deepest hole in the center of the lake, at the
locality that was occupied in 1967, 1975 and 1979. Data from this core, in Table
10, extend the chemical section in that part of the lake to 307 feet. The only
other sample of 1981 core analyzed to date is the "vein-in-vein"” sample from one
of the thick segregation veins in core KI81-2. This highly differentiated sample
(Table 11) is an unusually large example of a layer produced by pull-apart and melt
segregation within a segregation vein, and is the most fractionated sample
recovered from the lava lake.

Subsequently, some fill-in sampling was done, focussing on particular
problems. A suite of samples was taken from Ki81-1, consisting of core from just
above a segregation vein, a sample of the vein, core just below the vein, and a last
sample one meter (3 feet) below the vein. These samples (in job no. BW59) were
analyzed to try to determine whether the liquid in the segregation veins comes
from the adjacent mush, of from farther away. Also some of the more interesting
oozes recovered during repeated re-entry of the 1979 holes, were sampled for
analysis (job no. BT73, data in Tables 7a and 8a). Two of the ooze samples in
Table 7a, with MgO = 3.4-3.5%, are unique in the collection. They correspond to
liquids that apparently cannot segregate in the lake under natural circumstances,
but will flow into an open bore hole (see discussion in Helz, 1987a, on the limits of
differentiation in the lava lake).

Each sample to be analyzed was cut from the core with a diamond
sawblade, using water as the coolant. All subsequent sample preparation was
done in the analytical laboratories of the USGS in Reston. In general the freshest
material was selected, and samples were chosen to be representative of the ten-
foot interval from which they came. In a few cases, as noted above, internal
differentiates such as segregation veins and vorbs (vertical, olivine-rich bodies, see
discussion in Helz, 1993) were selected for analysis. In places where the core
included such heterogeneities, care was taken that the analytical sample be either
normal core only, or the variant rock only. The only sample that appears to be
inadvertently compound is KI79-5-240 in Table 9. Subsequent examination of
both the thin section and the analysis suggest that the piece of rock submitted for
analysis contained a smear of segregation-vein material in it that was not
recognized at the time.



ANALYTICAL METHODS

All of the analyses presented here were obtained by classical gravimetric
analysis in U.S. Geological Survey laboratories in Denver and Reston. The earliest
analyses [job nos. 955(DCS) and PD99 in the tables] were done in Denver,
following the procedures described in Peck (1964). All subsequent analyses were
done in Reston, following the procedures outlined in Kirschenbaum (1983). These
analyses include FeO, H,0 +, and CO, determinations, made as described in the
references cited.

In addition to those components determined by standard gravimetric
analysis, most of these analyses include determinations of Cr, Cl and F. Cr was
originally analyzed using a colorimetric determination (E. Engleman and H.
Kirschenbaum analyses, plus the J.W. Marinenko analyses in jobs BDO2 and
BD25). The method used was that of Maxwell (1968) and Sandell (1959).
Subsequently (in the later J. W. Marinenko analyses), Cr was determined by flame
AA, as described in Aruscavage and Crock (1987). Cl was analyzed
colorimetrically in the Engleman and Kirschenbaum analyses, while F was analyzed
by ion-specific electrode, as described in Jackson and others (1987). Later
analyses (major elements by J. W. Marinenko) used the ion specific electrode
method for both Cl (as described in Jackson and others, 1987) and F (as modified
by Kirschembaum, 1988). In addition, all samples in job 955(DCS), originally
done in Denver, were reanalyzed by H. Kirschenbaum for F and Cl using the ion
chromatograph in Reston (under new job no. BJ25).

Samples in several of the earlier jobs (nos. PE74, PH48, BA23, BA56 and
BD02, comprising 80 samples) were analyzed for total sulfur, as described in
Jackson and others (1987). However, as sulfur was always found to be below
the limit of detection, this determination was not made for subsequent samples.

Many analytical chemists of the U.S. Geological Survey have been involved
in obtaining this data set. The bulk of the analyses were the work of coauthors H.
Kirschenbaum and J. W. Marinenko, including many of the Cr, Cl and F analyses.
Other analysts who performed gravimetric analyses include G. Riddle [job no.
955(DCS)], and E. Engleman (job no. PD99). Some of the minor and trace element
work involved other members of the Branch of Analytical Chemistry: some of the
Cr determinations were done by J.G. Crock, M. Doughten and W.M. d’'Angelo,
while C. Skeen and D. Kobilis helped with the Cl and F analyses.



DESCRIPTION OF ANALYTICAL TABLES

The analytical tables are presented at the end of this report. Each table
contains analyses of core from one drill hole. For example, all core from the oldest
hole (KI67-1, the first hole drilled in 1967) is in Table 1. Where the hole was re-
entered more than once, and extensive sections of ooze were recovered in the
second or subsequent passes, analyses of the later cores are given in a separate
table. Thus, analyses of the first core recovered from holes Ki79-1 and KI79-3 are
in Tables 7 and 8, respectively, while Table 7a and Table 8a present analyses of
ooze from the redrilling of those two holes. Samples are listed within the tables by
depth, with the shallowest samples first, and the deepest recovered material last.
The "field no." given for each sample gives the drill core number, followed by the
depth of the sample in feet: sample KI67-1-52.1 comes from core KI67-1, 52.1
feet below the surface of the lava lake.

The "lab no." is the sample number given to each individual sample by the
Branch of Analytical Chemistry (BAC). The "job no." is the number assigned to
each group of samples submitted for analysis, and is given in the tables because it
is necessary to know that number to recover these and related data from the BAC
computer system. The initials of the analyst responsible for the major-element
data are given for each analysis.

Gravimetric data and the results on additional minor elements are normally
reported to two decimal places, and that convention has been followed here,
except for the analytical results for F and Cl, which have been reported to three
decimal places. A dash in the table indicates that the particular element was not
determined in that sample. A value of 0.00 in the table indicates that that element
was analyzed for but not detected.

At the bottom of the page, below the analyses, the tables contain some
further information on the samples. Where the space opposite "Type of sample” is
blank, the piece of core selected for analysis was relatively featureless, normal
core, varying principally in its olivine phenocryst and glass content. Other
descriptions indicate that the sample was an internal differentiate of the lake, or
was anomalous in some other way. Internal differentiates include the ferrodiabasic
segregation veins, and even more extremely differentiated veins, some of them
internal differentiates of the segregation veins ("vein-in-vein" samples). Other
anomalous samples are the very glassy samples such as the "glass-in-bit" samples
(segregations of nearly pure melt that represent the deepest core recovered from
several of the 1967 and 1975 drill holes). The samples designates as "oozes" are
material that flowed back up open drill holes, which was recovered when the holes
were re-entered in various (usually futile) efforts to go deeper. The composition
and mechanism of formation of internal differentiates of the lake were summarized
in Helz (1987a); data on the oozing history of the various drill holes, and on the



significance of the "glass-in-bit" samples, was presented in Helz and Wright
(1983). Another category of anomalous core noted in the tables includes samples
of foundered crust, that is, material that was originally at the surface of the lake,
but sank to some depth below the surface during or very shortly after the 1959
eruption. The nature, distribution and textural variants of foundered crust are
discussed in Helz (1993). Other terms used are self-explanatory.

The tables also note whether the sample analyzed contains glass (=
quenched melt) or not. Finally the core has been put into one of three categories,
depending on its pre-quenching temperature. "High" samples are those quenched
from temperatures above the solidus, which lies at 970-980°C; these contain
glass interpreted as having been a stable melt phase prior to quenching. "Medium”
samples are those quenched from temperatures below the solidus but above the
boiling point of water (approximately 110°C for the geothermal system in the lake,
as the water contains some dissolved saits). "Low" temperature samples are those
that were quenched from 110°C, and hence had been in contact with liquid water
prior to drilling. This information is included because it bears on the freshness of
the material analyzed, though all of the core is pristine by normal geologic
standards.

QUALITY OF THE ANALYSES

The overall quality of these analyses is high, and the internal consistency of
the data set is exceptional. The reproducibility of the method used was tested
formally, as reported in Flanagan and Kirschenbaum (1987). Their results
suggested thatanalyses of new samples could be expected to be consistent with
older data analyzed in the same laboratories, by the same methods, with the
expected differences no greater than the reproducibility of repeated analyses on
the same sample. This is important, as the analyses reported here were obtained
over the period 1968 [for job 955(DCS)] to 1990 (for final resuits on jobs BW59,
BT73 and BX99.

The first and simplest criterion used to judge the results was the analytical
summation. As shown in Figure 4, the bulk of the analyses in this report have
summations lying between 99.80 and 100.29 percent by weight. Of the five
analyses with higher summations, three are from a particular job (BK52, involving
samples from drill core Ki79-1), in which the SiO, analyses ran somewhat high.
Two BK52 samples were reanalyzed, and found to have lower SiO,; the other
three (not reanalyzed) presumably have the same defect. Similarly, the one
analysis with a summation below 99.60 (KI79-5-151, from job no. BR98) is low
because of a low SiO, value.

Other, more empirical rules, developed over the years of working with
samples from Kilauea Iki, provided a quick check on certain components of the
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analysis. One of these rules was that the ratio of P,05/K,0 should be essentially
constant, as there was no process operating in the lake that would cause that ratio
to vary, over the range of compositions for which we have whole-rock data. The
data for P,Og vs. K,0 are shown in Figure 5; the linearity of this plot
substantiates the validity of this assumption. Similarly, it was observed that the
P,0g content was almost exactly one-tenth of the TiO, content, for all samples
with MgO > 5.0% (that is, for all olivine-phyric samples and most of the diabasic
segregation veins). Again, the data support this, as shown in Figure 6. The few
samples with lower bulk MgO contents, such as the more differentiated oozes and
vein-in-vein samples have bulk compositions which reflect fractionation of Fe-Ti
oxides. These samples define an upper limb for the variation of P,Og vs TiO,,
along which P,0g continues to increase as TiO, decreases (see Figure 6). For
both these criteria, the occasional deviant sample was submitted for rechecking as
the results came in, and was almost always found to have been in error.
Exceptional samples include foundered crust and ooze, where migration of very
differentiated liquids has produced slightly anomalous bulk compositions.

Initially, the analyses were also formally evaluated by performing least-
squares calculations (Wright and Doherty, 1970). Each new analysis of drill core,
from the 1967 and 1975 drill holes, was checked to see if it was equivalent to
some combination of selected samples of the 1959 eruption pumices, plus or
minus olivine + chromite. This was the method used in Wright (1973) to
determine that all 1959 eruption samples could be represented as mixtures of the
two most differentiated samples + (olivine + chromite). For the lava lake,
samples from between 0-40 feet had compositions that could be so represented,
just as precisely as the eruption samples evaluated by Wright in the 1973 paper
had been. This result established, among other things, that the analyses of 1967
and 1975 drill core were fully consistent with the much earlier analyses of Murata
and Richter (1966), also produced in the USGS labs in Denver. However, as
discussed in Helz (1980), using plots of TiO, and Na,O vs. MgO to illustrate the
point, samples from deeper in the lake showed systematic deviations from
eruption-pumice chemistry. The deviations from eruption-pumice chemistry were
systematic with depth, and consistent from one drill core to the next, making it
extremely unlikely that analytical problems were involved. '

After recovery and analysis of the 1979 and 1981 core, Helz and others
(1989) evaluated the variation of core composition with depth systematically,
down to depths of 307 feet below the surface of the lava lake. Two principal,
mutually complementary zones were identified: an upper zone enriched in the melt
that would be present in the lava lake at or just below the temperature where
plagioclase first crystallizes, and a deeper zone depleted in this same melt
composition. As the density of this melt is lower than that of all other melts
present in the lake above 1100°C, Helz and others hypothesized that the zonation
was produced by upward migration of this minimum-density melt within the core
of the lake. In addition, it was found that core affected by extraction of the Fe-
and Ti-rich liquid equivalent to the diabasic segregation veins could be readily

11
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identified by its pattern of deviation from eruption-pumice chemistry.

For purposes of this report it is important to note that (1) these deviations
from eruption-pumice chemistry with depth are highly systematic, (2) the
deviations are consistent with the composition of particular melts that occupy
unique positions on the liquid line of descent of the lava lake (as defined in Helz,
1987a) and (3) that in all cases both halves of a process can be identified in the
core. That is, the complementary enriched and depleted zones are both present,
and both are recognizable by their chemical compositions. If the samples had been
subject to subsequent alteration, or if the analyses had been less than excellent,
the resulting noise could easily have produced an incoherent, uninterpretable
pattern.

CHEMICAL VARIATIONS IN KILAUEA IKI SAMPLES

The range and character of the chemical variations within the lava lake
samples can be most effectively displayed in a series of magnesia variation
diagrams. MgO is chosen as the abcissa first because it varies over a greater
range (2.37% to 27.41%) than any other component. In addition, it is known
from the experimental work of Helz and Thornber (1987) that MgO in Kilauea lki
melts increases linearly with temperature over the range from about 1.0% to
12.4%, so that the lower part of the variation can be read as varying temperature.
The variation in MgO in the upper part of the bulk compositional range (12.4-
27.5%) reflects varying amounts of phenocrystic olivine in the core, as discussed
in Helz (1987b) and Helz and others (1989); this variation may not be linear with
temperature over the whole range. The various magnesia variation diagrams are
shown as Figures 7a-f, with MgO decreasing from left to right. Thus temperature
decreases, and the extent of differentiation increases, to the right in each plot.

Figure 7a shows the magnesia variation diagrams for SiO, and Cr,03. Silica
increases steadily, along a well-defined olivine control line (Wright, 1971) over
most of the range. The composition of the olivine defining this line is Fogg 5.87.0
(Helz, 1987b; Murata and Richter, 1966). The onset of crystallization of augite
and then plagioclase at or below MgO = 7.5-7.0% mark the end of olivine
controlled variation. Their appearance has little effect on the trend of SiO, vs.
MgO, however, as their silica contents are not all that different from the liquids,
and they tend to cancel each other out. The first marked change in trend, at MgO
= 5.0%, is produced by the incoming of the Fe-Ti oxides; because these phases
contain essentially no SiO,, the trend of SiO, vs MgO shifts sharply upward at that
point. The upper plot, Cr,05 vs. MgO, shows the data for the only component in
the major element analyses that decreases as MgO decreases, throughout its
entire range. This pattern results from the fact that Cr,04 is concentrated in
chrome spinel, a very early-crystallizing phase, which is present in the drill core
almost exclusively as inclusions in the olivine phenocrysts. The Cr,03 content of

14



Figure 7. Oxide-oxide plots showing the compositional variation of the 1967-1981
core samples as a function of their MgO content. All quantities are in weight
percent. The different symbols correspond to the year in which a given sample
was recovered. In all cases, the symbols are larger than the analytical
uncertainty of each determination.
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the analysis thus reflects directly the olivine phenocryst content of the core: it is
higher in the more olivine-rich samples and decreases as the olivine phenocryst
content decreases, reaching zero at MgO = 5.0%, where the core is completely
free of phenocrystic olivine. The Cr,04 content of the segregation veins, oozes,
and extreme differentiates is below the limit of detection (effectively 100 ppm).

Figure 7b shows how Al,05; and CaO vary as a function of MgO content.
By plotting these two oxides together as one figure, we can see clearly the relative
positions of the incoming of augite and plagioclase, the two principal silicate
minerals found in the core. These two minerals, together with olivine, make up
95% + of the norm of any sample of Kilauea lki core. CaO rises as MgO decreases
until somewhere between 10.0% and 7.5% MgO, where it flattens out, before
decreasing strongly below 7.0%. Al,03 rises until 6.0-7.0% MgO; as discussed in
Helz (1987a) in detail, its subsequent variation is complex, but it is always lower
than it is at 6.0-7.0% MgO. From these patterns, we can infer that augite begins
to crystallize first, and is followed by plagioclase at a slightly lower MgO content
and temperature. The patterns seen in Figure 7b are consistent with the available
experimental results (Thompson and Tilley,1969; Helz and Thornber,1987.)

Figure 7c shows the variation of TiO,, of total iron as FeO and of MnO, as
a function of MgO content, together on one page. These oxides show more
complex patterns of variation, including more cross-trend variability relative to the
olivine-control trend, than most of the oxides discussed so far. The pattern for
TiO, is the simplest: it increases as MgO decreases, following the olivine-control
trend to MgO = 7.0%. It then rises steeply to a peak of almost 5.0% TiO, at
5.0% MgO, and declines very sharply thereafter. The glass data of Helz (1987a)
show that the limiting value for TiO, is actually 5.5%, but we do not have a
whole-rock sample that catches this most extreme level of TiO, enrichment. The
peak marks the point at which the first Fe-Ti oxide, either ilmenite or
ferropseudobrookite (as discussed in Helz, 1987a), begins to crystallize.

The trends for FeO and MnO are very similar, reflecting the fact that Mn
proxies for ferrous iron in all of the iron-bearing minerals in the lava lake. The
patterns not only look similar: individual outliers in the two plots also correspond,
in almost all cases. The patterns are complicated by the presence of the four
samples enclosed in a circle: these are analyses of "vorbs", the vertical, olivine-rich
bodies originally described in Helz (1980). The vorbs have subsequently been
recognized as diapir tracks, created by the passage of vesicle-rich plumes from the
lower mush zone in the lake to the upper mush zone (Helz, 1987a; Helz and
others, 1989). Vorbs are enriched in the Fe- and Ti-rich liquid characteristic of the
segregation veins, and are enriched in olivine relative to the surrounding rock. This
enrichment in olivine was achieved at a stage when the olivine phenocrysts had re-
equilibrated significantly, to more Fe-rich compositions. Hence instead of lying on
the slope of the original olivine-control line (which owes its slope to the variable
amounts of Fogg 5.g7.0 Phenocrysts present in the core), the vorbs define a steeper
slope (approximately Fogg). This steeper slope implies that the vorbs formed at a
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relatively late stage, and at a lower temperature (T= 1130-1140°) than the
temperature at which the original olivine settling occurred [T=1180-1190°C, see
discussion in Helz (1987a); Helz and others (1989)]. Their enrichment in MnO
parallels their enrichment in FeO, and reflects the tendency for Mn in olivine to
increase as the Fe content increases. Below MgO = 6.0%, and the incoming of
the iron-free mineral plagioclase, FeO in the rocks and residual liquids rises steeply,
passing through a peak at roughly the same point TiO, does. The FeO content
declines subsequently, as the various Fe-Ti oxide phases, first ilmenite or
ferropseudobrookite and subsequently magnetite, begin to crystallize. Note that,
although MnO rises with FeO and TiO,, to MgO = 5.0%, it does not decline
sharply thereafter in the whole-rock samples available, down to 2.4% MgO. As
the glass data of Helz (1987a) show, MnO does eventually decline toward zero,
but lags behind FeO: this reflects the relative concentrations of the two oxides in
magnetite, where FeQ makes up 68-76% by weight while MnO is present at the
0.3-0.6% level.

The variation patterns for the alkalies vs. MgO are shown in Figure 7d. Both
Na,0 and K,0 increase as MgO decreases, with some increase in slope (especially
for K,0) below MgO = 5.0%. The whole-rock samples do not extend to the range
where the glass data (Helz, 1987a) suggest that Na,0 may pass through a peak
and decline: that point is not reached until MgO = 1.0%. Both the whole-rock and
glass data show K,0 increasing monatonically all the way to the solidus. In whole-
rock samples, the maximum K,O observed is about 2%, seen in the vein-in-vein
sample from KI81-2 (Table 11) and in a similarly differentiated ooze from a partially
molten segregation vein intersected by hole Ki67-2 (KI67-2-85.7 in Table 2). By
contrast K,O reaches values of over 5% by weight in the last residual glasses
(Helz, 1987a). The rate of increase is higher for K,0 than for Na,0 below 5%
MgO because the concentration of Na,O in plagioclase (the only alkali-bearing
phase to crystallize in the lava lake) is much higher than the concentration of K,0
in plagioclase. Alkali feldspar, as a separate phase, is not observed in any glass-
bearing sample from the lava lake, although plagioclase feldspar may be zoned to
very sodic compositions: the most sodic and potassic rim composition so far
observed in any Kilauea lki sample is Ang ;Abgg gOr,4 5 (Helz, unpublished data).

Figure 7e shows P,0g, F, and Cl together on one page, in order to facilitate
comparison among them. The analyzed values for F and Cl were reported to three
decimal places rather than the usual two, for most of the analyses presented in
this report, for purposes of comparing data within this data set. The observation
that the concentration in F rises smoothly as MgO decreases suggests that these
determinations are better than normal two-place reporting would imply. Cl is
noisier, but even there, the third decimal place appears to have some information
value. (If one wishes to compare these results with other kinds of analyses or
analyses from other laboratories, the numbers should probably be rounded off to
the normal two decimal places.) There is obviously great similarity between the
pattern for P,Og and those of both halogens, especially that of fluorine. This is
because the only phase in the lava lake (other than the melt) that can take up any
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of these components is apatite, which begins to crystallize at about 2.5% MgO.
The glass data (Helz, 1987a) show that P,0g peaks at that point and declines at
lower MgO contents; the whole-rock data in Figure 7e extend just to the point
where apatite saturation is reached, so the subsequent falling-off in P,Og (and
presumably F and CIl) is not observed in the present figure. Until apatite begins to
crystallize, all three of these components remain in the melt, their concentration
increasing as crystallization proceeds, in a pattern almost identical to that of K,O.

The last set of MgO variation diagrams, shown in Figure 7f, are those for the
highly volatile components H,0 and CO,. H,0 is divided, by virtue of customary
analytical technique, into H,0 + and H,0-. H,0 + is "structural” or dissolved
water, which can be driven off from the sample only at high temperatures, while
H,0-, which can be driven off at temperature of 110°C, is loosely bound or even
adsorbed water. These components are shown separately in this figure, in the
tables, and elsewhere in this report.

The only phases in the lava lake that can accomodate water are the melt and
apatite. The upper bound of the H,0 + variation does correlate roughly with
increasing melt content, suggesting that some of this water is really in the melt
and that it is behaving predictably. The pattern is otherwise noisy, however.

The plot of H,0- vs. MgO is essentially random: this is as expected for the loosely-
held water, which may even be a late-stage contaminant, possibly introduced
during drilling, cutting or grinding of the sample. Note that H,0- concentrations
are restricted to very low levels compared with the range of values for H,0 +.

In addition to the H,0 data in the tables, we have IR spectroscopic
determinations of the water contents of a few samples. These samples were
chosen for IR investigation because either they were very glass-rich or had large
pools or areas of glass in them. These previously unpublished data are shown in
Table A (with the permission of Dr. J.E. Dixon, of the University of Miami, who did
the analyses), along with the bulk H,0 contents reported here for most of same
samples. The IR analyses have an uncertainty of +£10% of the amount present, or
+0.01-0.02 absolute. For two of the melt-rich "glass-in-bit" samples, the IR
determinations of dissolved H,0 agree very well with the total H,O contents
reported in the analyses of those same samples. For the third (KI67-3-87.0), Dixon
reports that the section she analyzed was rather thin, which may contribute to the
discrepancy between the two H,0 determinations for that sample.

For one of the other IR samples (KI79-3-172.9), we have a bulk analysis, but
the sample consists mostly of crystal-rich mush, with only a few large pools of
glass. If one assumes all the H,0 is in the glass, we can estimate the fraction of
glass present from the ratio of the bulk H,0 to glass H,0 (0.06/0.15), giving a
melt fraction of about 40% by weight. This is in good agreement with the
observed mode, and suggests that both water contents are correct. The remaining
sample, Ki79-6-190.3, is reported as having only 0.11% water in the glass, for
reasons that are not yet clear. We do not have a bulk analysis for this sample, so
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Table A. Comparison of bulk H,0 analyses (H,0 +,H,0- as given in this report)
with water contents of Kilauea lki glasses determined by IR spectroscopy. The IR
analyses are unpublished data of Dr. J.E. Dixon. All quantities in weight percent.

Sample no. IR data H,0 +,H,0- Comments
(glass only) (bulk rock)

Ki67-3-87.0 0.17 0.11, 0.00 glass in bit

Ki67-2-98.0 0.12 0.14, 0.00 glass in bit

K175-2-138.7 0.17 0.15, 0.02 glass in bit

KI79-3-172.9 0.15 (0.05, 0.01) crust/melt
interface*

KI79-6-190.3 o1 e crust/melt
interface *

*Both of these samples contain a sharp interface between overlying "crust™ and an
underlying layer of crystal-poor melt. In each case, this was the deepest piece of
core recovered from the hole, and the underlying melt has been found to be a
segregation of interstitial, differentiated melt, as discussed in Helz and Wright
(1983). It is not equivalent in bulk composition to the overlying crust. The IR
measurements were made on the glass in the melt-rich layer, while the bulk H,0
contents (where determined) were made on the overlying crystal-rich mush.
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cannot cross-check the IR determination. In general, however, the IR results agree
well with the bulk H,0 determinations, which suggests that the latter are generally
reliable.

The CO, values in these analyses have been reported to two decimal places
only, so the values in Figure 7f lie at 0.01, 0.02 or 0.03, with no data at
intermediate positions. The sense of the plot is that the very tiny amount of CO,
present is in the melt, because the upper limit of the CO, contents rises as bulk
MgO decreases. The levels are very low, however, and there is no phase in the
lake other than the melt in which CO, can be retained, so in the subsolidus
samples CO, must occur strictly as accidental inclusions, or be loosely adsorbed
on the surface of mineral grains.

BEHAVIOR OF VOLATILE COMPONENTS IN KILAUEA IKI LAVA LAKE: A
DISCUSSION

The availability of this large suite of intrinsically very fresh samples, which
have been subjected to very painstaking classical analysis, gives us an opportunity
to assess how the various volatile (or potentially volatile) components in the
original magma behaved as the lava lake cooled and crystallized. The components
of interest here are sulfur, water, and the halogens fluorine and chlorine.

The magma contains these volatiles in the first place because they were
present in the source region in the mantle. The sulfur was present as separate
sulfide phase(s), while the water and halogens were derived from the host minerals
for K and for P (phlogopite and perhaps hornblende, plus apatite). The volatile
contents of an original primary magma (MgO = 16%) have been inferred to be
0.47% H,0 and 0.09% sulfur (Dixon and others, 1990), based on observed
volatile contents of glasses from the submarine extension of Kilauea’s east rift
zone. Gerlach and Graeber estimate the volatile contents of a "parental” magma to
be 0.30% H,0, 0.65% CO,, 0.13% sulfur, 0.0087 % Cl and 0.0354% F, and
state that most of the CO, and about half of the initial sulfur are lost during
storage prior to eruption. The volatile contents of stored, reservoir-equilibrated
magma are estimated by Gerlach and Graeber (1985) to be 0.27% H,0, 0.034
CO,, and 0.07% sulfur, with Cl and F the same as in the parental magma.

Early Volatile Loss

The 1959 summit eruption was notable for its very high fire fountains,
especially unusual in a summit eruption. This has led to the inference (Helz,
1987b) that the magma must have been somewhat more gas-rich than usual. In
addition to degassing during the vigorous fountaining, the new lava lake produced
voluminous amounts of fume, especially prior to development of a stable crust
(Richter and others, 1970). Gas samples collected over the lake at this stage
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(Heald and others, 1963) show the evolved gases becoming richer in H,O with
time, while becoming poorer in CO, and sulfur species. A similar trend can be seen
in the data of Anderson and Brown (1993), in which the maximum CO, content of
melt inclusions in olivines decreases as the MgO content of the melt in the
inclusion decreases. The early lake and glass inclusion data support the model of
Gerlach (1986) and Gerlach and Graeber (1985), which has CO, being lost first,
followed by sulfur species, with H,O being exsolved from the melt last.
Nevertheless, in spite of the early loss of sulfur, H,O and especially CO,, the
crusted-over lake did initially contain enough primary magmatic volatiles for it to be
possible for Rawson (1960) to collect a respectable gas sample from the bottom of
one of the earliest drill holes (analysis presented in Heald and others, 1963).

In addition to the above data, Murata (1966) reported the occurrence of an
unusual HCl-rich vapor, collected from a fumarole on the main 1959 cinder cone,
away from the main vent and away from the lava lake. Similar high-HCI gas
samples have occasionally been reported at Kilauea, but they are rare. Murata
described and analyzed the sample thoroughly, but in considering its origin and
significance he stated that it "raises more geochemical questions than it answers”.

Later Degassing: CO, and Sulfur

Essentially all of the CO, dissolved in the 1959 magma was lost during the
eruption: that is the obvious message of the low and incoherent values for CO,
presented in Figure 7f. The bulk chemistry of samples from lava lake can tell us
nothing useful about the behavior of CO, in Kilauea lki, though an investigation of
the CO, content of melt inclusions in olivine phenocrysts in the drill core might be
useful.

Bulk sulfur contents are even less informative: as noted above, sulfur was
never present in detectable quantities in any core sample. Nevertheless, we have
quite a bit of information on the timing of sulfur degassing in the lake, from field
and petrographic observations. Helz and Wright (1983) summarized the available
field observations on degassing of sulfur from drill holes, reporting that noticeable
amounts of sulfur were emitted from drill holes in 1967, 1975 and 1976, as soon
as the partially molten zone was reached. Later, during the 1979 and 1981 drilling
episodes, the drill holes emitted only odorless steam. At this stage of sulfur
depletion, even after sulfur was no longer detectable to the nose in the steam,
droplets of immiscible sulfide were still observed in all glassy samples core from
the 1979 and 1981 cores quenched from below T= 1060°C (Helz, unpublished
data). This pattern of occurrence of sulfide droplets is the same as in all earlier
(1960-1976) core. Direct microprobe analysis of sulfur in these interstitial glasses
gives values of S = 0.013-0.026% by weight. A third level of sulfur depletion has
been observed in the core recovered in 1988; in those cores, only glassy core from
below the thermal maximum contained immiscible sulfide: apparently the melt in
the upper half of the partially moliten zone had lost essentially all its dissolved
sulfur. The significance of these observations is, as discussed in Helz and Wright
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(1983), that sulfur loss was proceeding faster than the overall crystalliztion of the
lake, with the entire body of melt being depleted in sulfur in the process. This
argues for distillation and transport of sulfur by a through-going vapor phase,
because the sulfur contents themselves are far too low to generate a sulfur-rich
vapor.

The Dominant Volatile: H,0_

The obvious carrier gas for the extraction of sulfur from the melt is H,0, in
the form of pervasive, low-density dry steam. All thin sections of glassy material
from the lava lake contain at least a few scattered vesicles in the interstitial glass.
Vesicle contents in the partially molten intervals of the 1979 and 1981 cores are
typically 1-3% (data presented in Figures 7 and 8 of Barth and others, 1993; also
in Mangan and Helz, 1986). So the question arises, why was there so much
degassing of steam so late in the history of the lake, when sulfur degassing was
practically over?

To answer this question we should first consider the distribution of H,0 in
the lava lake. It was noted above that water is divisible into two components, of
different significance: a more tightly bound H,0 + component and the very loosely
bound H,0- component. The magnesia variation diagrams presented above
showed a difference in behavior between H,0 +, which exhibited some systematic
variation with bulk MgO content, and H,0-, which was random. In Figures 8 and
9, we have set up histograms of these two components, in order to examine the
behavior of water in the lake samples a little more closely. In these figures, the 80
melt-bearing samples (quenched from high temperatures, as noted in the analytical
tables) are plotted separately from the 95 subsolidus samples (quenched from
medium and low temperatures, also as noted in the analytical tables).

Figure 8 includes all of the bound water (H,0 +) analyses. The most striking
feature of these two histograms is that the frequency distribution of the melt-
bearing and subsolidus samples is very similar over much of the range. The one
difference is the shift in the population in the three lowest ranges (0.00-0.02%).
For melt-bearing samples, only 13 samples (or 16% of the population) have H,0 +
= 0.00 to 0.02%. However, in the population of subsolidus samples, 28 of them
(or 29% of the analyses) have H,0 + values in the range 0.00 to 0.02%. The
only phases that can contain water are the melt and apatite; therefore the water
content of the core would be expected to decrease (strictly speaking to zero) as
the last melt crystallizes. While there is some shift to lower values, the shift is not
as marked as one might expect. Evidently much of the tightly bound H,0 + is
either in melt inclusions within crystalline phases, or in vapor inclusions, or in some
surface film, from which it cannot be extracted until high temperatures are
reached. This surface film would presumably be a metastable glass. The
occurrence of such a persistent glass film has already been hypothesized, based on
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Figure 8. Histogram of H,O + values reported for analyzed samples of 1967-1981
drill core. The upper plot shows H,0 + values for 80 samples quenched from
high temperatures, that is, samples which were quenched from within the
melting range of the basalt, as indicated by the presence of glass in the
groundmass. The lower plot shows H,0+ values for 95 samples quenched
from below the solidus (T < 980°C).
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the fracturing behavior of the lake, as reviewed in Helz (1993); the H,0 + data
offer further support for its presence, even in samples where no glass can be seen
with the microscope.

In any case, there is no evidence for progressive depletion of the melt in
H,0 with time, as crystallization of the lake proceeds. All of the available data,
whether the H,0 + contents in Figures 7f and 8, or the IR determinations of the
water contents of glasses from 1967-1979 given in Table A, show water contents
being maintained at saturation levels in the melt. The data on vesicle populations
in the partially molten 1979 and 1981 core, cited above, are consistent with the
idea that H,0 in the melt is not being depleted, even though sulfur, the other
principal retained volatile, was nearly exhausted sometime between 1976 and
1979. Clearly H,0 was being added to the lake. Because the lake is perched well
above the water table, in highly porous rocks, the source of this H,O must be the
abundant rain that falls on that part of Kilauea. (The local rainfall is about 150
inches per year on the rim of Kilauea Iki pit crater.) Exactly how meteoric water
gets into the body of the melt is still unclear.

Figure 9 shows the equivalent histograms for the H,0- determinations. Here
there is an obvious change in the frequency distribution between melt-bearing and
subsolidus samples. Samples quenched from the melting range overwhelmingly
have H,0- values of 0.00-0.02%, with only 16 samples out of 80 (or 20%) having
more adsorbed water. Clearly these are very fresh samples; it is evident from
these very low H,0- values that the copious water used during drilling to cool the
drill string and the hot core (see discussions of drilling techniques in Helz and
Wright, 1983, and Helz, 1993) has not introduced significant water into the drill
core. By contrast, the subsolidus samples contain more H,0-: 43 samples out of
95 (or 45%) have adsorbed-water contents of 0.03 or higher. The results for the
melt-bearing samples show that these levels cannot be blamed on the water used
during drilling. The extra H,0- must represent water added to the subsolidus
samples after the last meit crystallized, and before drilling. That is, this extra
water represents the first traces of alteration of the core by reaction with the
steam and/or geothermal fluids in the upper part of the lake. Further evidence for
the presence of trace amounts of alteration products in subsolidus Kilauea lki core
is presented by Anderson (1987), who hypothesized the presence of clays and
zeolites in shallow (6.0-6.7 m depth) samples, based on the electrical conductivity
of those samples.

The Halogens

F and CI are often thought of as "volatiles", that is, components that will
be partitioned into a vapor or fluid phase, and be lost as crystallization proceeds.
The occurrence of the HCI-rich vapor reported by Murata (1966) suggests that
under some circumstances this is true at Kilauea. In the lava lake, however, the
magnesia variation diagrams for F and Cl (Figure 7e, discussed above) show that
both halogens behave like highly incompatible minor elements, and exhibit no
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Figure 10. F/P,0g vs. F in samples from Kilauea Iki lava lake. All quantities are in
weight percent. The horizontal line indicates the F/P,Og ratio in fluorapatite.
Sample plotting above the line thus have F in excess of what can be put into
apatite.
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Figure 11. CI/F vs F in samples from Kilauea lki lava lake. All quantities are in weight
percent. The upper plot shows data from the earlier core (1967, 1975), while
the lower plot includes data from more recent drillings (1979, 1981). The open
symbols indicate core samples quenched from high or medium temperatures.
The filled symbols indicate core quenched from T = 110°C, that is, core that
had been exposed to liquid water. The horizontal line is at Cl:F = 1:3, which
is close to the average CI:F ratio for Kilauea Iki.
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discernable tendency to be lost to the vapor phase, down to bulk compositions as
differentiated as 2.5% MgO.

This would be expected to change as the last melt disappears. The only
crystalline phase so far recognized in the core that can take up Cl and F is apatite.
Figure 10 shows the ratio F/P,0g vs. F for all lake samples; the ratio of F/P,0g in
fluorapatite, which is 0.09 (see analyses in Deer and others, 1992), is indicated by
the horizontal line in this figure. Almost all lake samples fall above this line; that
is, almost all lake samples have more F than can be accomodated in apatite, even
if the apatite in the lake were pure fluorapatite. These samples also contain some
Cl and some H,0 +, which also can be accomodated only in apatite or in the melt,
so these components are notably more abundant than can be explained by the
apatite content of the core.

Figure 11 shows plots of CI/F vs F for the whole-rock analyses, with the
1967-75 core in the upper plot and the 1979-81 core in the lower plot. "Hot" and
"medium” samples (open symbols) scatter about the horizontal 1:3 line that is
close to the average CI:F ratio in the lake, in both the upper and lower plots. The
amount of scatter is quite large. It is not clear whether the scatter reflects real
initial variability, or analytical problems, or possibly redistribution of Cl vs. F in the
samples at some time prior to 1967. The shift to slightly lower F levels in the later
core reflects the greater depth and hence, higher olivine phenocryst and bulk MgO
content, of the hot zone samples from 1979 and 1981, not loss of F.

Cl has been lost relative to F from the lowest-temperature samples in the
1979 and 1981 core. In the earlier core, the low temperature samples show
relatively little loss of Cl relative to F. Thus Cl is somewhat more easily removed
from the rocks than F, but even it is largely retained in the drill core. There is no
evidence that F is lost at all. The excess halogens may be accomodated either (1)
in films of metastable glass, especially in the "medium” temperature samples
[those subsolidus samples that have not been exposed to liquid water], or (2) in
the core from T<110°C, in trace amounts of zeolites or other alteration products
formed by the hydrothermal alteration of pre-existing metastable glass. Thus the
retention of the halogens, like the retention of H,0 +, supports the idea that there
are persistent glass films in the intermediate-temperature samples, and alteration
products in the lowest-temperature core. In any case, the halogens do not enter
the steam phase at any stage of the development of Kilauea lki lava lake; only
leaching by liquid water has any effect, and then only on Cl.
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